GIS 7011. Introducing ArcGIS. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
ArcGIS is a GIS developed and sold by Environmental Systems Research Institute, Inc. (ESRI). It has a long history and has been through many versions and changes. Originally developed for large mainframe computers, in the last 10 years it has metamorphosed from a system based on typed commands to a full-featured graphical user interface (GUI), which makes it easier to use. Because of the size and complexity of the suite of programs, and because users have come to depend on certain aspects of the software, much of the code is carried forward and included in new versions. Knowing this background helps a student of ArcGIS understand the nature of the ArcGIS system, and helps explain some of its odd features and characteristics.

GIS 7012. Working with ArcMap. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
ArcMap works with map documents; a map document is a collection of different spatial data layers and tables, along with instructions for how the layers will be displayed. Map features have properties that control the symbol, color, and style with which they are drawn. Tables have properties that specify which fields are shown, how many decimal places are included, and so on. The map document keeps track of all of these layers and their properties, so that when it is opened again, the map appears exactly as it was when it was last saved. Even the size of the windows and the location of the toolbars are stored when saving the document.

GIS 7013. Coordinate Systems and Map Projections. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
A successful GIS system depends in large part on using projections correctly, and a person’s skill in managing and converting projections can dictate the value of a database. Unfortunately, projections can be somewhat daunting to those encountering them for the first time, so review is often necessary to become comfortable. One learns best about projections by working with them.

GIS 7014. Drawing & Symbolizing Features. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
ArcMap provides many ways to present and analyze map data, and one of the most powerful techniques is assigning symbols based on one or more attributes. Readers can quickly see spatial patterns not readily apparent from looking at the data. This section presents many ways to display features, and it also shows how to edit symbols and save them in groups, as styles.

GIS 7015. Working with Tables. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
A table is a data structure for storing multiple attributes about a location or object. ArcGIS manages these data tables in an object it refers to as a Table, which is a window that displays information from the tabular data structure and allows the user to work with the information in the file. The data may come from several types of data files, but the Table itself always looks the same and has the same functions, so that users don’t need to learn different commands for working with different file types.

GIS 7016. Queries. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
A query extracts features or records from a data table and isolates them for further use, such as printing them, calculating statistics, editing them, creating new files from them, or doing more queries. In the simplest kind of query, the selected features are highlighted on the screen, and the corresponding records in the table are highlighted as well. This course provides examples of that selection and highlighting.

GIS 7017. Spatial Joins. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
A spatial join is similar to an attribute join except that instead of using a common field to decide which rows in the table match up, the location of the spatial feature is used. For example, a point layer containing locations of wells and a polygon layer of geology could be joined to determine the geologic unit the well lies within. Each well gets the attribute information from the polygon it lies inside. An alternate criterion is distance - joining records that lie closest to each other, such as tagging each hotel with its closest restaurant.

GIS 7018. Map Overlay. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
Spatial joins, although powerful, are limited when spatial features do not overlap exactly. When this limitation occurs, the ability to split features and assign use to each section is required. This ability to split features that partially overlap is the most important feature of a map overlay and explains how it differs from a join.

GIS 7019. Presenting Data. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
GIS analysis often results in information to be shared with others in the form of maps or reports. Whether you’re creating a large poster-style map, a page-sized map, or a report, a few guidelines help in devising a map design which expresses the essence of the data and gets its message across. This section introduces some basic ways to communicate ideas to others.

GIS 7110. Geocoding. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
A street address contains a type of spatial information; however, additional knowledge on the part of the post office is required in order to deliver mail, e.g. the location of the street and the sequence of house numbers. Geocoding combines map information with street addresses in order to locate a point uniquely; it enables someone to convert a list of addresses into points on a map.

GIS 7111. Basic Editing in ArcMap. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
Editing in ArcMap provides the ability to modify and update existing layers of data, or to create new ones. For example, if a housing subdivision is added to a city, the new roads must be added to the city’s roads layer. Likewise, new parcels, sewer lines, and other infrastructure need to be added to the city database to ensure it is up to date. A new layer may be created to reflect a city council’s decision to create garbage collection zones where none existed before. This section provides insight into these processes.

GIS 7112. More Editing Techniques. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
Examining additional ways to form and modify features. First, examining the functions of the different types of sketch tools, look at ways to modify and reshape features, combine features together, and create new features by buffering old ones. Finally, discovering how to easily edit features which share a common boundary.
GIS 7113. Working with Geodatabases. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
In ArcGIS software, coverages were the first data model used. Later in ArcView, shapefiles were developed; in ArcGIS 8 the geodatabase model arrived. The new model offers advantages over coverages and shapefiles but is simpler in construction and more robust in general usage. This module provides insight into those advantages.

GIS 7114. Analyzing Networks. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
Networks consist of a system of paths traveled by a variety of things, e.g., traffic, water, sewage or electricity; they generally also have a modeling capability to be able to better answer common problems that may arise. Geodatabases contain a special data model developed to answer those same kinds of questions by creating a network of feature classes or layers. This module explores that technique.

GIS 7115. Raster Analysis. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
The availability of two different data models, raster and vector, provides added flexibility to options for data storage and analysis. Neither model is intrinsically superior; both have areas in which they excel and areas in which they are at a disadvantage. Having a grasp of both tools holds the key to developing the most efficient and accurate analysis.

GIS 7116. Introduction to ArcGIS 9.3. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
ArcGIS 9.3 is a software package developed and sold by Environmental Systems Research Institute, Inc. (ESRI). It has a long history and has been through many versions and changes. Originally developed for large mainframe computers, in the last 10 years it has metamorphosed from a system based on typed commands to a full-featured graphical user interface (GUI), which makes it easier to use. Because of the size and complexity of the suite of programs, and because users have come to depend on certain aspects of the software, much of the code is carried forward and included in new versions. Knowing this background helps a student of ArcGIS understand the nature of the ArcGIS system, and helps explain some of its odd features and characteristics.

GIS 7117. Introduction to ArcPad and GPS Analyst. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
A comprehensive suite of theory, techniques, and hands-on practice to learn to use GPS equipment and software for data collection, with the final product being a geospatial data layer. Course emphasis is on how to complete a cultural resources GPS project from start to finish. The student will learn how to plan a field collection, create a data dictionary, download and correct GPS data, and then export to a GIS data format. Equipment and software used during the course for project planning and field exercises includes Trimble Mapping GPS receivers, TerraSync Field Software, Pathfinder Office software, and ESRI ArcGIS.

GIS 7200. HAZUS-Multi-Hazard Training - Hurricanes. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
This class is designed specifically to provide training in: An introduction and overview of HAZUS; The particular nuances using ArcGIS software for map creation and basic editing; And the use of models for various hurricane scenarios.

GIS 7320. Integrating Cultural Resources with GIS GPS. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
A comprehensive suite of theory, techniques, and hands-on practice to learn to use GPS equipment/software for data collection, with the final product being a geospatial data layer inside. Course emphasis is on how to complete a cultural resources GPS project from start to finish. The student will learn how to plan a field collection, create a SDS compliant data dictionary, download and correct GPS data, and then export to a GIS data format. Equipment and software used during the course for project planning and field exercises includes Trimble Mapping GPS receivers, TerraSync Field Software, Pathfinder Office software, and ESRI ArcGIS.

GIS 7500. GIS in Economic Development. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
Having the right tool for the right job is an accurate way of describing the requirement for the use of GIS technology in the role of economic development. Without the tool and data, performing adequate analysis to be able to determine suitable (or best) site selections are extremely difficult and sometimes impossible. Without that analysis, marketing or other forms of communications of strengths is a formidable task. This course describes those tools, data and communication techniques.

GIS 7700. GPS in GIS. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
A comprehensive suite of theory, techniques, and hands-on practice to learn to use GPS equipment/software for data collection, with the final product being a geospatial data layer inside. Course emphasis is on how to complete a cultural resources GPS project from start to finish. The student will learn how to plan a field collection, create a data dictionary, download and correct GPS data, and then export to a GIS data format. Equipment and software used during the course for project planning and field exercises includes Trimble Mapping GPS receivers, TerraSync Field Software, Pathfinder Office software, and ESRI ArcGIS.

GIS 8101. Working with ArcPad 7. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
ArcPad is ESRI's mobile GIS software that is used to capture, display, analyze, and edit geographic information in the field. This focused course provides an overview of ArcPad 7 and demonstrates some of its powerful capabilities. Students learn about the wide range of tools, symbols, and style sheets that come with ArcPad and how ArcPad is used to gather and edit data. The course emphasizes best practice principles and considerations for common field tasks.

GIS 8111. Learning ArcGIS9. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
ArcGIS Desktop software is an integrated system that includes all the tools needed to get the most out of a GIS. This course introduces fundamental concepts of GIS and the major functionality contained within ArcGIS Desktop software. In course exercises, participants follow the GIS analytical process and work with a variety of tools to solve realistic problems. This course emphasizes practical GIS skills.

GIS 8112. Creating and Integrating Data for Natural Resource Applications. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
Frequently, the natural resource data needed for a project (such as vegetation, species locations, or watersheds) does not exist. Or, the data may exist but significant manipulation is required before it can be displayed and used for analysis in a GIS. This four-module course teaches methods for acquiring, evaluation, creating, manipulating, and integrating data in preparation for analysis and map creation. Participants will learn tips for assembling a high-quality database, as well as best practice approaches to data problems commonly encountered by those in the natural resource and conservation fields. In a course project, participants apply the skills they've learned throughout the course.
GIS 8115. Creating, Editing, and Managing Geodatabases for ArcGIS 9. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
The geodatabase is the ESRI data model that allows features to be modeled more realistically then ever before. This course covers all the basics and introduces the more advanced functionality that makes the geodatabase such a powerful data model. Participants will be able to get started working with geodatabases right away and understand the range of functionality that the geodatabase offers.

GIS 8120. Understanding Map Projections and Coordinate Systems. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
Map projections and coordinate systems enable us to map the three-dimensional earth on a two-dimensional surface such as paper or a computer screen. This course introduces the fundamental concepts behind map projections, datums, and coordinate systems. Participants learn how the earth's shape is defined and how geographic features are positioned using spherical coordinate systems. Essential characteristics of all map projections-aspect, perspective, and distortion-are discussed. Participants work with several popular projections and learn in which circumstances to use them. The emphasis is on theory, but participants gain practical experience working with ArcGIS software to apply map projections, modify their properties, and manipulate data sets stored in different coordinate systems. This course does not teach the mathematics behind individual map projections.

GIS 8121. Cartographic Design Using ArcGIS 9. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
As more people begin making maps using GIS software, they need to understand cartographic design principles that will help them create maps that are clear and convincing to those who will read them. This course discusses key design issues and teaches practical guidelines for creating maps that are well suited to their display medium and that speak effectively to their audience. Participants learn fundamental design principles and practice with the ArcGIS Desktop tools for creating high-quality maps.

GIS 8122. Working with Map Topology in ArcGIS. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
This workshop provides an overview of map topology and gives ArcView users a foundation for working with map topology tools.

GIS 8125. Learning ArcGIS 9 3D Analyst. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
ArcGIS 3D Analyst software provides advanced tools for three-dimensional modeling and analysis. This course teaches what a surface model is and shows how to create both raster and vector surfaces. Working mostly with models of terrain, participants display surfaces in three-dimensional perspective, symbolize them, and set three-dimensional properties. Participants also create realistic models by draping aerial photographs over surfaces and displaying two-dimensional features in three dimensions.

GIS 8130. Creating and Maintaining Using ArcGIS Desktop. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
Metadata, the key information that documents a dataset, has emerged as a powerful tool for safeguarding an organization's investment in spatial data. Documenting datasets allows people to efficiently find them, evaluate their usefulness for a particular project, and share them with others. This course shows how metadata supports efficient management and use of spatial data and teaches practical strategies for creating and maintaining metadata using ArcGIS Desktop software. Participants learn how to write proper metadata using tools in ArcCatalog and how to automate metadata workflows using templates.

GIS 8131. Creating and Editing Geodatabase Topology with ArcGIS 9. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
ArcGIS software provides full support for geodatabase topology, including an advanced editing environment for maintaining topological relationships among features. This course explains how topology is implemented in the geodatabase and teaches how to use geodatabase topology to more accurately model the real world.

GIS 8132. Understanding Branching & Looping in VBA. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
Branching allows programs to execute different code based on user input or the result of a process. With looping, programs can repeat processes until specific conditions are met. This workshop introduces the two branching methods (the If Then Else statement and the Select Case statement) and the two looping structures (the For Next loop and the Do loop) that are available in the VBA environment, and teaches how to implement them. The workshop also teaches how branching and looping can be used in conjunction with ArcObjects.

GIS 8135. Learning ArcGIS 9 Spatial Analyst. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
ArcGIS Spatial Analyst software supports a broad range of sophisticated spatial modeling and analysis applications. This course teaches how to use ArcGIS Spatial Analyst to produce and control raster data. Participants create a variety of raster surfaces including hillshade relief maps, slope and aspect surfaces, and density and distance surfaces. In course exercises, participants work within the new ArcGIS geoprocessing environment to create, execute, and automate spatial analysis workflows.

GIS 8161. Customizing ArcGIS 9. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
Designed for nonprogrammers, this course reveals how to customize ArcMap and ArcCatalog. By rearranging interface controls and taking advantage of available code samples, participants learn how to tailor ArcGIS to match individual preferences and workflows. The course covers how to rearrange basic elements of the interface, customize toolbars and menus, and create custom tools and buttons. Additionally, participants learn how to locate and implement existing VBA code samples to add custom functionality.

GIS 8162. Customizing ArcMap: Easy Ways to Extend the Interface. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
This workshop introduces easy ways to add custom functionality to the ArcMap interface. Using sample Visual Basic and VBA code, participants learn how to add, remove, and rearrange toolbars and menus; create new buttons, tools, command, and shortcut keys; and access commands that are not on the ArcMap interface.

GIS 8211. Spatial Analysis of Geohazards Using ArcGIS 9. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
Geologic hazards loom all around. As population growth forces more communities to expand into areas at risk, concern increases about the danger that geohazards pose to people, property, and the environment. This course shows how GIS can be used to determine where geohazards are likely to occur and assess their potential impact on the human community. Participants work with ArcGIS Desktop software to analyze and map a variety of geohazards. A better understanding of these events is the first step toward effective disaster planning.

GIS 8214. Creating and Editing Geodatabase Topology with ArcGIS 9. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
ArcGIS software provides full support for geodatabase topology, including an advanced editing environment for maintaining topological relationships among features. This course explains how topology is implemented in the geodatabase and teaches how to use geodatabase topology to more accurately model the real world.
GIS 8215. Creating and Editing Geodatabase Features with ArcGIS 9. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0 ArcGIS 9 software introduces new and improved sketch and edit tools for the geodatabase. This course teaches how to use those tools to build a geodatabase from the ground up. Participants learn how to utilize ArcMap's standard and advanced tools to create and edit simple and complex features as well as feature-linked and dimension annotation. Additionally, participants learn how to work with features using coordinate geometry (COGO) descriptions and survey measurements.

GIS 8220. Introduction to ArcGIS I. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0 ArcGIS Desktop software is an integrated system that includes all the tools needed to get the most out of a GIS. This course introduces fundamental concepts of GIS and the major functionality contained within ArcGIS Desktop software. In course exercises, participants follow the GIS analytical process and work with a variety of tools to solve realistic problems. This course emphasizes practical GIS skills.

GIS 8221. Introduction to Urban and Regional Planning Using ArcGIS 9. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0 For decades, urban and regional planners have used GIS technology to help find solutions to the challenges posed by increasing population growth and urban development. This course covers basic urban and regional planning concepts and tasks and teaches how those tasks can be managed using GIS techniques and ArcGIS Desktop software. Participants learn how to use ArcGIS tools to address real-world social, economic, and environmental planning problems. The skills and techniques presented in the course provide an effective and efficient means of carrying out urban and regional planning tasks.

GIS 8225. Geoprocessing with ArcGIS Desktop. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0 Geoprocessing is a primary function of a GIS. ArcGIS Desktop software provides hundreds of tools for processing geographic data as well as ModelBuilder, a graphical environment for visualizing and executing work flows. This five-module course teaches practical strategies for using the ArcGIS geoprocessing framework to accomplish GIS work flows. Participants work with geoprocessing tools to create and organize workspaces, prepare data for analysis, and perform GIS analysis tasks, then learn how to streamline processes using models and scripts. Participants also learn how to create custom geoprocessing tools and the importance of documenting custom tools, scripts, and models. This course provides a solid foundation in the ArcGIS Desktop geoprocessing framework and emphasizes hands-on practice through software exercises.

GIS 8230. Turning Data into Information Using ArcGIS 9. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0 This course examines the scientific methods used to derive useful information from spatial data. Participants will explore GIS theory related to the visualization, measurement, transformation, and optimization of spatial data. An underlying theme that uncertainty is an inherent characteristic of spatial data is thoroughly examined and students learn how to identify it, measure it, and live with it.

GIS 8232. Protecting Your Investment in Data with Metadata. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0 This course is designed to make GIS professionals take a critical look at their data documentation needs. Further, this course is designed to teach GIS professionals how to use ArcCatalog to document their data according to the Federal Geographic Data Committee's (FGDC) Content Standard for Digital Geospatial Metadata.

GIS 8235. Working with Rasters in ArcGIS 9. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0 Many geographic phenomena are best represented as rasters, but GIS users tend to be less familiar with this data model than with the vector data model. This course unlocks the mysteries of the raster. Participants learn which types of geographic phenomena are appropriately represented as rasters and how the type of data affects raster analysis. In course exercises, participants explore and work with a variety of raster datasets using core ArcGIS tools. Participants gain experience displaying rasters and modifying their properties to aid visual interpretation.

GIS 8240. Solving Disaster Management Problems Using ArcGIS 9. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0 Participants will learn to apply GIS to protect life, property, and critical infrastructure from natural disasters such as earthquakes, hurricanes, volcanoes, floods, and wildfires, as well as human-caused disasters, including technological hazards or acts of terrorism. Key GIS applications include natural hazard identification and mapping, multi-hazard analysis, shelter planning, mitigation, damage assessment, and recovery monitoring. Additionally, participants will learn how to present GIS data in ways that support emergency management analyses.

GIS 8300. Google Sketchup for GIS modeling. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0 This course will introduce and explore the tools and techniques needed to build three dimensional (3D) models using Google Sketchup and ArcGIS. Students will learn the basic techniques of creating 3D models by using basic shapes and TIN's in ArcGIS and extruding their elevations with Google Sketchup. Advanced techniques such as "painting" and "landscape visualization" will be introduced to create more realistic scenes.

GIS 8400. Creating GIS Web-Mapping Applications. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0 This course will focus on some of the different methods for creating and deploying useful Internet Web-Mapping applications. Students will focus on using ArcGIS Server to build and deploy applications including ArcGIS Server web mapping, Google Earth and Google Maps KML and KMZ files, and using the ArcGIS Server platform to manage web mapping applications. Students will also learn techniques in ArcMap to build maps that will function properly in ArcGIS Server and basic server maintenance for web mapping applications.

GIS 8600. Building and Managing a Geodatabase in ArcGIS. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0 This class is designed to introduce basic concepts in building and managing a geodatabase and to explore advanced options for geodatabase use. The course will guide the student through the design process and illustrate multiple methods in customizing a geodatabase. Special emphasis will be placed on topology, annotation, and coordinate systems.

GIS 8800. GIS/GPS for NC Water Technicians. 0.0 Hours. Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0 This class is designed specifically for the NC Rural Water Association for technicians in NC water & stormwater utilities. It is designed to provide training in: GIS concepts, the particular nuances using ArcGIS software for map creation and basic editing, and the use of GPS devices and procedures to integrate position data into GIS systems.
GIS 8801. GIS/GPS for NC Water Technicians II. 0.0 Hours.
Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
This class is designed specifically for the NC Rural Water Association for technicians in NC water & stormwater utilities. It is designed to provide training in: GIS concepts, the particular nuances using ArcGIS software for map creation and basic editing, and the use of GPS devices and procedures to integrate position data into GIS systems.

GIS 8802. Water Association-Introduction to GIS. 0.0 Hours.
Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
This class is designed specifically for the NC Rural Water Association for technicians in NC water & stormwater utilities. It is designed to provide training in: GIS concepts, The particular nuances using ArcGIS software for map creation and basic editing.

GIS 8803. Water Association-Introduction to GPS. 0.0 Hours.
Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
This class is designed specifically for the NC Rural Water Association for technicians in NC water & stormwater utilities. It is designed to provide training in: The use of GPS devices and procedures to integrate position data into GIS systems.

GIS 8804. Water Association-Introduction to Cartography. 0.0 Hours.
Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
This class is designed specifically for the NC Rural Water Association for technicians in NC water & stormwater utilities. It is designed to provide training in: Map Creation; Basic Editing & Features of maps.

GIS 8805. Water Association-Advanced GIS. 0.0 Hours. Class-440.0.
Clinical-0.0. Lab-0.0. Work-0.0
This class is designed specifically for the NC Rural Water Association for technicians in NC water & stormwater utilities. It is designed to provide training in: Geoprocessing (Spatial Analysis); More Editing Techniques; Analyzing Networks.

GIS 8901. GIS/GPS Primer for Environmental Use. 0.0 Hours.
Class-440.0. Clinical-0.0. Lab-0.0. Work-0.0
This course will include content from 4 established courses: GIS8101 includes "A focused course provides an overview of ArcPad 7 and demonstrates some of its powerful capabilities". GIS8111 "introduces fundamental concepts of GIS and the major functionality contained within ArcGIS Desktop software". GIS8112 "Teaches methods for acquiring, evaluating, creating, manipulating, and integrating data in preparation for analysis and map creation". GIS8120 includes "Map projections and coordinate systems to enable students to map the three-dimensional earth on a two-dimensional surface such as paper or a computer screen".